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Abstract This work presents a hybrid algorithm for neural
network training that combines the back-propagation (BP)
method with an evolutionary algorithm. In the proposed
approach, BP updates the network connection weights, and
a (1 + 1) Evolutionary Strategy (ES) adaptively modifies
the main learning parameters. The algorithm can incorporate
different BP variants, such as gradient descent with adap-
tive learning rate (GDA), in which case the learning rate is
dynamically adjusted by the stochastic (1 + 1)-ES as well as
the deterministic adaptive rules of GDA; a combined opti-
mization strategy known as memetic search. The proposal is
tested on three different domains, time series prediction, clas-
sification and biometric recognition, using several problem
instances. Experimental results show that the hybrid algo-
rithm can substantially improve upon the standard BP meth-
ods. In conclusion, the proposed approach provides a simple
extension to basic BP training that improves performance and
lessens the need for parameter tuning in real-world problems.
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1 Introduction

Artificial neural networks (ANNs) are one of the most widely
used paradigms in pattern analysis and machine learning
research.In particular, the multi-layer perceptron (MLP) has
proven to be a powerful and versatile tool in many domains,
including recognition (Melin and Castillo 2005), classifica-
tion (Zhang 2000) and time series prediction (Castillo and
Melin 2002). MLPs are feed-forward and fully connected
ANNs that are trained with supervised learning methods,
the most common of which is the back-propagation (BP)
algorithm (Rumelhart et al. 1986). BP is a gradient descent
method that propagates an error measure (such as the mean
square error) from the output layer of the network to the
input layer, taking into account all hidden layers in between.
For years this algorithm has been considered the standard
approach for supervised MLP training. However, BP is also
hampered by three noteworthy shortcomings. First, BP suf-
fers from learning problems, such as overtraining and some-
times a slow convergence depending on the characteristics of
the problem and the initial connection weights. Second, it can
lead to network paralysis where the algorithm is unable to
significantly modify the connection weights to achieve per-
formance improvements. And third, it often gets trapped in
local minima, a common problem for gradient-based meth-
ods. To overcome these shortcomings, several improvements
to basic BP training have been proposed (Isasi Viñuela 2004).
For instance, gradient descent with adaptive learning rate
(GDA) or gradient descent with momentum (GDM).

Currently, the improved variants of BP are widely used
when training MLPs. Nevertheless, one drawback of these
methods is that they tend to require several ad-hoc decisions
to correctly apply them in real-world problems. Furthermore,
they introduce several new parameters to achieve adaptation
during training, but the parameters themselves remain con-
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stant throughout the entire process. This constrains the man-
ner in which the learning process searches for the minimum
over the error surface. One common approach to overcome
these limitations is using more robust variants of BP, such
as the Rprop algorithm (Riedmiller 1994). Still others have
turned to population based optimization methods, such as
evolutionary algorithms, to search for the optimal set of con-
nection weights, thereby avoiding gradient-based learning
altogether (Yao 1999; Cantú-Paz and Kamath 2005; Kiranyaz
et al. 2009). However, such an approach does not exploit the
powerful local optimization that gradient-based methods can
offer. Therefore, we propose a hybrid approach that combines
the learning improvements of previously proposed methods
with the global search of evolutionary algorithms.

The proposal developed here, dynamically modifies the
main parameters of a BP algorithm in an unconstrained man-
ner using a (1 + 1) Evolutionary Strategy (ES). The canoni-
cal training methods are easily incorporated within the evo-
lutionary loop of the (1 + 1)-ES, yielding a simple hybrid
learning strategy. Indeed, Cantú-Paz and Kamath (2005) per-
formed a comprehensive comparison of different evolution-
ary approaches for neural network training and found that
simpler methods performed the best; therefore, simplicity
was a guiding principle in the proposal presented here. The
experimental work evaluates the performance of this pro-
posal using benchmark problems of time series prediction,
classification and biometric recognition. Results are promis-
ing, achieving a substantial improvement in most cases and
never performing substantially worse.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a brief introduction to the BP algorithm
and some of the most widely used variants. Then, Sect. 3
presents the problem addressed in this work and introduces
the hybrid training proposal. Section 4 outlines previous work
in hybrid evolutionary-neural network research, while Sect. 5
gives a detailed description of the proposed algorithm and its
memetic variants. Afterwards, Sect. 6 contains the exper-
imental setup and results on several benchmark problems.
Finally, concluding remarks are given in Sect. 7.

2 Background and basic concepts

2.1 Back-propagation training

The standard supervised learning method for MLPs is BP,
a gradient descent optimization algorithm that backwardly
propagates the error between the network output and the
desired output. BP uses this error to modify the network
connection weights based on the gradient and on a learn-
ing rate parameter β, which modulates the step size of
the weight updates. Despite the success of BP training,
it is well-known that it suffers from several limitations.

Therefore, many researchers have proposed algorithmic
improvements.

2.1.1 Back-propagation algorithm

In an MLP, the input pattern is propagated forward through
the network, and this results in a vector of activation val-
ues in the output layer, which means that the MLP basi-
cally acts as a function. The behavior of the function can be
changed by modifying the connection weights between indi-
vidual neurons. Starting from an initial set of random con-
nection weights, the objective of BP is to adaptively modify
these weights in order to achieve a particular input/output
behavior. In fact, the overall goal is to minimize the error E
given by

E = 1

2
(dp − yp)

2, (1)

where dp is the desired output and yp is the actual network
output obtained for each input pattern x p.1 In order to do so,
the connection weight wi jl between neuron i in layer l and
neuron j in layer l + 1 is modified at each epoch t by the
following rule

wi jl(t + 1) = wi jl(t) + �wi jl(t), (2)

where

�wi jl(t) = βδi(l+1)p(t)y jlp(t) (3)

δi(l+1)p(t) is the generalized error term at neuron i in layer
l +1 for pattern p, given by the product of the first derivative
of the activation function and error E , y jlp(t) is the output
of neuron j in layer l for pattern p, and where β is the learn-
ing rate parameter. For a more complete description of BP
training the interested reader is referred to (Rumelhart et al.
1986; Radi and Poli 2003).

2.2 BP with adaptive learning rate

One of the earliest improvements to BP was to adaptively
modify the learning rate on-line during training (Hagan and
Beale 1996). In standard BP the learning rate is constant dur-
ing the entire training process, it is thus imperative to choose a
correct initial value. For instance, if the learning rate is set too
high the algorithm may oscillate and become unstable. Con-
versely, if it is too small then convergence will be slow. How-
ever, setting an optimal value for β is not trivial. Moreover,
the optimal value might change during the training process.
Therefore, if β is allowed to change during training the qual-
ity of the learning process might improve. The idea is to make
β responsive to the structure of the local error surface.

1 The error measure E given above is just one possible measure that
can be used.
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In order to implement this idea, the GDA algorithm modi-
fies BP in the following ways. First, the initial network output
and error are calculated. At each epoch new weights are com-
puted using the current β. New outputs and errors are then
measured. If the new error exceeds the old error by more than
a predefined threshold then the new weights are discarded and
β is decreased by a fixed amount, call this parameter β�−.
Otherwise, the new weights are kept, and if the new error is
less than the old error, the learning rate β is increased by a
constant parameter β�+. Therefore, if a larger β could result
in stable learning then it is increased. On the other hand, if
the learning rate is too high to guarantee a decrease in error
then it is decreased until stable learning resumes (Hagan and
Beale 1996).

2.3 BP with momentum

Another proposed improvement is the GDM algorithm,
which takes a different approach towards overcoming some
of the shortcomings of BP. It is equivalent to BP, with an
added parameter called the momentum coefficient γ which
is used to modify the weight update rule as follows (Sama-
rasinghe 2006)

�wi jl(t) = γ�wi jl(t − 1) + (1 − γ )βδi(l+1)p(t)y jlp(t).

(4)

In essence, γ produces an averaging effect by which changes
in connection weights consider both the current error value
as well as past weight changes.

2.4 BP with momentum and adaptive learning rate

Based on the previous methods, GDA and GDM, the gradi-
ent descent algorithm with momentum and adaptive learning
rates was proposed (GDX), which combines the advantages
of both (Hagan and Beale 1996).

3 Problem description and main proposal

We have outlined three of the most common improvements
to BP training, GDA, GDM and GDX. However, the man-
ner in which these methods operate also raises other issues.
For instance, in GDA the learning rate is either increased or
decreased by the fixed parameters β�+ and β�−. One could
argue that the value of these parameters should also be subject
to an adaptive process during training. Furthermore, in GDM
the γ coefficient is held constant, and there is no a priori rea-
son to assume that such a strategy is optimal. Therefore, in
this work we hypothesize that a better learning strategy would
be able to adaptively modify all of the main parameters of the
algorithm in an unconstrained manner. This follows from the

basic argument behind the GDA method, where it is assumed
that because the error surface changes during training then
the optimal β should also change. Therefore, we argue that
the same logic must hold for parameters such as β�+ and
β�−, and the γ coefficient. For example, in GDA β should
be able to increase or decrease during training without the
need of constant step sizes, and in GDM γ could also be
adaptively modified.

Therefore, we propose an improvement to BP that can
dynamically change the main parameters of the learning
algorithm without constant step values. In order to achieve
this we develop our proposal using a hybrid algorithm that
combines an evolutionary search process and standard BP.
Concretely, we use evolutionary strategies as a global search
method that adapts the main learning parameters during train-
ing and allows the gradient descent algorithm to perform a
local search over the MLP error surface. With the hybrid
approach, we combine the exploration capabilities of evolu-
tionary search with the local optimization provided by gra-
dient descent. Moreover, the proposal can incorporate the
basic BP algorithm as well as any of the previously proposed
improvements (GDA, GDM and GDX) without requiring
substantial modifications. To contextualize the current con-
tribution, the following contains a brief overview of how
evolutionary computation (EC) has intersected with ANN
research in previous works.

4 Evolutionary computation and ANNs

Evolutionary computation encompasses a large variety of
global search and optimization methods that are based on
an abstract model of Neo-Darwinian evolutionary theory.
Some of the most widely known paradigms are genetic algo-
rithms, evolutionary strategies and genetic programming,
all of which are based on similar conceptual principles
(DeJong 2002), and are closely related to other population-
based meta-heuristics such as particle swarm optimization
(Kiranyaz et al. 2009) and ant colony optimization (Dorigo
and Stützle 2004). These methods have proven to be quite
robust and flexible, applicable to a large variety of applica-
tion domains and problem instances.

In the case of ANNs, many attempts have been made to
use evolutionary methods to optimize a specific character-
istic of an ANN (Yao 1999; Cantú-Paz and Kamath 2005).
Probably the most common strategy is to use EC to deter-
mine the optimal connection weights of an ANN (Yao 1999;
Fogel et al. 1990), in some cases combining an EC algorithm
with standard learning techniques (Alba and Chicano 2004).
For instance, this approach has found strong acceptance in
robotics applications, an approach referred to as evolution-
ary robotics, where a well posed error gradient is not fea-
sible (Nolfi and Floreano 2000). Recently, these approaches
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have allowed researchers to train extremely large networks by
exploiting concepts from developmental biology and indirect
encoding schemes (Stanley et al. 2009). Another possibility
is to use EC to search for an optimal network topology (Miller
1989) and then use standard learning methods to determine
the connection weights of the network. Still yet, others have
attempted to reduce the amount of a priori knowledge as
much as possible by concurrently searching for the optimal
network topology and connection weights within a single
evolutionary loop (Harp et al. 1989; Stanley and Miikku-
lainen 2002).

On the other hand, EC has also been used to develop imp-
rovements to the traditional learning process. For instance,
some researchers use EC techniques to determine the ini-
tial connection weights of an ANN, instead of using random
weights, from which the learning algorithm can then pro-
ceed (Lee 1996). Still yet, others have focused on optimizing
the BP parameters off-line, to find optimal values that can be
used throughout the entire learning process (Patel 1996) or by
considering the learning parameters and connection weights
concurrently (Merelo et al. 1993). Finally, some researchers
have used automatic program induction with genetic pro-
gramming to derive new learning rules through and evolu-
tionary search (Radi and Poli 2003). In our work, however,
we are interested in developing an adaptive strategy similar to
what is done in GDA, with an additional evolutionary search
that allows for dynamic modifications of the BP parameters.
A similar approach was proposed in (Kim et al. 1996) with
several important differences that are addressed in Sect. 5.5.

5 The proposed hybrid learning approach

This section presents our hybrid approach for BP learning
using evolutionary computation.

5.1 Evolutionary strategies

Evolutionary strategies are an optimization technique based
on the core principles of EC highlighted in the previous sec-
tion (Schwefel 1981). In ES, candidate solutions are coded
as real-valued parameter vectors. In the canonical version
only one operator is used to generate new parameter vectors
(offspring), a Gaussian mutation that perturbs the value of
each parameter; for a detailed introduction see (Eiben and
Smith 2003). Moreover, two selection strategies are com-
monly used with ESs, (μ + λ) and (μ, λ), where μ is the
number of individuals in a population and λ is the number of
offspring generated at each generation. In a (μ + λ)-ES, the
individuals contained in the next generational loop are cho-
sen from the best solutions from both the past population and
the offspring. Conversely, in (μ, λ) the λ offspring replace
all of the μ individuals in the previous population. In other

words, (μ+λ) is an elitist strategy while (μ, λ) is not (Eiben
and Smith 2003).

5.2 Evolutionary strategies for BP learning

As stated above, our proposal is to combine BP with an evolu-
tionary search. The goal is to provide a mechanism by which
the main parameters of a BP algorithm can be adaptively
modified on-line during network training. For this task we
have chosen the (1 + 1)-ES, because:

• It is well-known and understood.
• It is particularly well suited for real-valued parameter opti-

mization.
• It is very simple to implement, which allows us to main-

tain the basic structure of BP unchanged. From this it fol-
lows that the method will not dramatically increase the
computational cost of training an ANN. Simplicity was
explicitly considered given the conclusions derived by the
extensive comparison of previously proposed evolutionary
approaches carried out by Cantú-Paz and Kamath (2005).

The proposal is a hybrid learning process, such that a
(1+1)-ES adaptively changes the BP parameters after a spec-
ified number of epochs, during which the BP training algo-
rithm carries out the standard weight updates. The (1+1)-ES
represents the simplest type of evolutionary search, that lacks
the intrinsic parallel nature of other population based evo-
lutionary techniques, such as genetic algorithms or genetic
programming. Therefore, the (1 + 1)-ES is closely related to
other heuristic search methods such as simulated annealing
(Kirkpatrick et al. 1983). Nonetheless, the aim of the pro-
posal is to develop a simple and robust improvement to BP
training with a minimal amount of computational overhead,
and, as we shall see in our results, the (1+1)-ES fulfills these
requirements.

The proposed algorithm proceeds as follows. First, gen-
erate a BP parameter vector x with standard initial values
that are commonly used in the literature. In this case, the
number of parameters depends on the version of BP used.
For instance, if we use GD or GDA then x would contain
only the β parameter. On the other hand, if we use GDM
or GDX, then x would contain β and the momentum coeffi-
cient γ . Afterwards, randomly generate the initial connection
weights of the ANN called Ax , just as it would be done in
standard BP. This leads to the first generation (iteration) of the
(1 + 1)-ES. Within the evolutionary loop, create a mutated
version of x called y, using a Gaussian mutation with the
same σ for all elements. Then, make a copy of Ax , call this
Ay. Train Ax using the BP parameters specified in x for
a total of ρ epochs, and the same is done for Ay with the
parameter values y. After training both networks we obtain
a corresponding convergence error from each, call these Ex
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and Ey, respectively. The error values are used to determine
which ANN and which parameter vector will survive for the
following generation. This process is repeated until one of
two conditions is met: (1) the total number of generations
is reached; or (2) the goal error for the ANN is achieved.
In this algorithm there are two new parameters. One is the
number of epochs per generation denoted by ρ. The other
is the value of the step size σ of the Gaussian mutation. In
this work, σ is set to a constant value of 0.2, while ρ is set
using an extensive experimental evaluation described in the
following section. It should be mentioned that some of the
most advanced, and successful, variants of ES are those that
adaptively modify σ by including it as another decision vari-
able optimized by the evolving process (Eiben and Smith
2003). In fact, in such a case an ES can fit σ to the structure
of the fitness landscape, with the slight tradeoff of increasing
the dimensionality of the search space and possibly making
it more complex. However, in our case the search space is
not fixed, that is, fitness evaluation is dynamic because BP
modifies the connection weights at each time step (possibly
several times) and thus changes the underlying structure of
the fitness landscape. Therefore, we choose not to include an
adaptive mutation step size in the evolutionary process.

5.3 Memetic search

Since the proposal in this work does not depend on a specific
BP variant, it is also possible to use learning algorithms that
can also modify the learning parameters, in particular GDA
and GDX which adapt the learning rate β. If such is the
case, this parameter can be adapted by two separate mecha-
nisms, the more unconstrained global search carried out by
ES and by local optimization with gradient descent. This type
of combined optimization strategy is called a memetic algo-
rithm within EC literature (Eiben and Smith 2003), and two
variants exist. The first one is a Lamarckian memetic algo-
rithm (Husbands 1994), where inheritance of acquired traits
is possible, while the other is based on Baldwin’s theory of
inherited learning ability (Paul et al. 1987). The difference
between both approaches is based on whether or not the mod-
ifications made to β by the underlying BP algorithm (in this
case GDA or GDX) are encoded back to the parameter vec-
tors (x or y) and thus propagated to the next generation. In the
Lamarckian case the updated β is inserted into the parameter
vector, while in the Baldwinian case it is not. In our work,
we test both variants, thus we have a total of ten different
algorithms that are tested, these are:

• Standard algorithms: Basic back-propagation (GD), GDA,
GDM and GDX.

• Non-memetic BP with ES: GD-ES and GDM-ES.
• Lamarckian memetic algorithms: GDA-ES/L and GDX-

ES/L.

• Baldwinian memetic algorithms: GDA-ES/B and GDX-
ES/B.

5.4 Discussion and design choices

A reasonable question arises regarding the proposed algo-
rithm. In the development of an algorithm that can automati-
cally adjust the learning rate and momentum coefficient for a
BP training algorithm, we have introduced several new para-
meters related to the (1+1)-ES, namely μ, λ, σ and ρ. Then,
it might seem that the original concern arises again: is it nec-
essary to dynamically adjust these parameters based on the
learning process to achieve optimal performance? However,
care must be taken regarding such concerns, if not we might
fall into an infinite regress of algorithm design if an algo-
rithm without parameters cannot be derived. Consider that
the goal of an evolutionary algorithm is to automate a real-
world problem solving process, allowing system designers
to transfer the responsibility of determining some solution
features to an independent process. This, as stated before,
comes at a cost, with a possible increase in system para-
meters and (for most problems) no guarantee of optimality.
However, in practice these shortcomings are mostly over-
come by the fact that evolutionary algorithms tend to be quite
robust, achieving strong results in a wide range of parameter
values (Eiben and Smith 2003; DeJong 2002). The implicit
assumption made when evolutionary algorithms are used is
that the search process will be easier to setup and configure
than the underlying problem that needs to be solved.

Returning to the problem addressed in this work, the fol-
lowing design choices are made. First, population sizes μ

and λ are set to 1, to maintain computational cost low with
respect to standard BP variants. Second, the Gaussian muta-
tion step size σ is set to a constant value to maintain a simple
search process and because the search presents a dynamic
fitness landscape. Third, the step size is set σ = 0.2 since
the domain of both BP parameters that are evolved, β and
γ , is basically [0, 1],2 thus the step size provides a good
exploratory search. Finally, the number of epochs per gener-
ation ρ can be seen as the only new parameter in the proposed
(1 + 1)-ES. Therefore, the proposed experimental study will
first focus on analyzing the influence of ρ on the quality
of network training over a wide range of values. It should
be noted that such an experimental validation is definitely
not exhaustive (there might be a plausible interdependence
between the (1 + 1)-ES parameters), but any further analysis
is left as future research. Nonetheless, the experimental work
is aimed at showing that the (1+1)-ES provides a sufficiently
robust algorithm that simplifies parameter setting and tuning.

2 For the momentum coefficient γ this is strictly the case, while for the
learning rate β most published works suggest values within this range.
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5.5 Comparison with previous work and design choices

The proposal developed in this work, is one of a handful of
methods that address the problem of MLP training with arti-
ficial evolution. In fact, to our knowledge, only the work in
Kim et al. (1996) presents a similar approach, with several
noteworthy differences. First, Kim et al. (1996) only con-
siders the learning rate, it does not include the momentum
coefficient. Second, in Kim et al. (1996) the learning rate
is updated every generation by the evolutionary algorithm,
thereby not exploiting a local optimization. In fact, this con-
figuration is contained as a particular case of our approach
and is evaluated in the experimental work presented below.
However, the experimental results strongly suggest that the
best performance is achieved by a trade-off that exploits both
optimization strategies using a memetic approach, instead of
the pure evolutionary search of Kim et al. (1996). Third,
Kim et al. (1996) use an evolutionary algorithm with a pop-
ulation of 20 or 50 individuals, thus raising the number of
different networks that must be trained concurrently. On the
other hand, by using a (1 + 1)-ES we are at most doubling
the total computation required to train a single network, a
negligible increase for many real-world scenarios. Finally,
while Kim et al. (1996) only presents preliminary results on
simple synthetic problems, we consider several benchmark
and real world problems from ANN and machine learning
literature.

6 Experiments and results

The aim of the experimental tests is twofold. Firstly, we want
to estimate a range of values for which the ρ parameter gives
the best performance. Secondly, perform a series of compara-
tive tests between the basic BP algorithms (GD, GDA, GDM
and GDX) and the corresponding ES variants. The goal of
the first set of experiments is to examine how ρ influences
the performance of the learning process and to determine
a proper range of values for which ρ gives the best perfor-
mance. The second set of experiments will provide a compar-
ative statistical validation of the type of improvements that
the hybrid algorithm yields. These experiments are carried
out using three different problem types, and six datasets in
total. Finally, all of the algorithms are coded and tested using
Matlab 2009a.

6.1 Datasets and experimental setup

Three different problem types are used: time series predic-
tion, classification and biometric pattern recognition. With
several different instances for each case.

The Mackey and Glass (1977) time-delay differential
equation is used for time series prediction, given by

Table 1 Mackey–Glass time series problem, from left to right: dataset,
network architecture and initial parameters for BP algorithm

Time series Dataset Network Params

Mackey–Glass 800 samples 1 Hidden layer β = 0.01

500/training, 25 neurons, γ = 0.9

300/testing 3 inputs: x(t − 1) Epochs= 4,000

x(t − 2), x(t − 3) Goal = 1e−10

Tan-Sigmoid
activation

Prediction
horizon: x(t)

dx

dt
= 0.2x(t − φ)

1 + x(t − φ)10 − 0.1x(t). (5)

We construct three datasets by using φ values of 16, 17
and 30, where the the first produces no chaotic behavior and
the last produces the most, we respectively call each dataset
MKG1, MKG2 and MKG3. The initial conditions in each
case are x(0) = 1.2 and x(t) = 0 for t < 0, and the data is
generated using a Matlab 2009a implementation of the 4th
order Runge–Kutta method.

Additionally, three different classification problems are
tested, taken from the UCI repository,3 these are forensic
glass, red wine quality, and breast tissue. Finally, the algo-
rithm is also tested on a recognition problem, using the ORL
face dataset (Samaria and Harter 2002). For face recogni-
tion, each image is given as input to the neural network in
vector form without any preprocessing, where each is of size
92 × 112 pixels and in greyscale.

The datasets are summarized in Tables 1, 2 and 3, along
with the neural network architecture and parameters used
in each experiment. The learning rate and momentum coef-
ficient use the default values provided with the implemen-
tations of the training algorithms from the Neural Network
Toolbox for Matlab, except for the classification problems
where they are set based on the best performance achieved
by GD on the forensic glass problem. For GDA and GDX
β�+ = aβ with a = 1.05 and β�− = bβ with b = 0.7,
as suggested in the Neural Network Toolbox. Additionally,
the neural network architecture was also set empirically for
all problems based on the best performance achieved by GD,
except for the face recognition problem where GD performs
quite poorly, so the architecture is set based on the perfor-
mance of GDA. In summary, network architecture and initial
BP parameters are set based on the performance of standard
BP variants or based on the suggested values from a widely
used Matlab toolbox. This provides an initial baseline con-
figuration that can be used to fairly compare the proposed
ES-based variants.

3 UCI Machine Learning Repository, http://archive.ics.uci.edu/ml.
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Table 2 Description of the classification problems, from left to right:
dataset, network architecture and initial parameters for BP algorithm

Problem Dataset Network Params

Forensic glass 214 samples 2 hidden layers β = 0.5

K-fold = 10 64 neurons γ = 0.5

7 classes 7 output neurons Epochs = 4,000

10 attributes Log-Sigmoid
activation

Goal = 1e−10

Red wine quality 1,599 samples 2 hidden layers β = 0.5

K-fold = 10 15,11 neurons γ = 0.5

6 classes 6 output Epochs= 4,000

11 attributes Log-Sigmoid
activation

Goal = 1e−10

Breast tissue 106 samples 2 hidden layers β = 0.5

K-fold = 3 60 neurons γ = 0.5

6 classes 4 output neurons Epochs = 4,000

9 attributes Log-Sigmoid
activation

Goal activation
= 1e−5

Table 3 Description of the biometric face recognition problem

Problem Dataset Network Params

Face
recognition

400 samples 2 hidden layers β = 0.01

K-fold = 10 84,45 neurons γ = 0.9

40 person 40 output neurons Epochs = 1,000

10 images of
each person

Goal = 0.00001

Note that the learning rate and momentum parameters
define the initial individual of the (1 + 1)-ES. In all three
cases, a desired goal error is used as the primary stopping
criterion and a maximum number of epochs as a secondary
criterion, both specified in the corresponding tables refer-
enced above.

6.2 Effects of the number of epochs per generation
on network training

It is imperative to analyze how the number of epochs per
generation, specified by the ρ parameter, effects the perfor-
mance on learning for each algorithm. To do so, we test each
algorithm on a specific problem and vary ρ over a fixed
range of values in a discrete logarithmic scale, given by
[2, 3, . . . , 10, 20, 30, . . . , 100, 200, 300, . . . , 1000, 2000].
This allows us to test the effect of ρ at different orders of
magnitude. We perform this test on a dataset from each prob-
lem type: for time series we use MKG1, for classification
we use forensic glass, and for biometric recognition we use
face recognition. Moreover, in order to obtain statistically
valid results, for time series we compute the average per-

formance over thirty independent runs.On the other hand,
for classification and biometric recognition we use the aver-
age performance of tenfold cross-validation as suggested by
Refaeilzadeh et al. (2009). For instance, Fig. 1a shows the
average classification accuracy and standard error on the test
set of forensic glass for GDM-ES over the entire range of ρ

values, presented in a log scale. In this case the performance
reaches a maximum plateau in the range of [200−1,000],
which can be considered as a proper operating range for
GDM-ES. This is done for all of the ES variants and all
of the problem types, these results are summarized in the
second, third and fourth columns of Table 4. For most of
methods, in all of the problems, the best vale for ρ is a few
hundred epochs per generation, with some exceptions that
achieved better performance with smaller ρ values. Addi-
tionally, we can count the number of times that evolution
produced improvements on the learning parameters, which
is the number of times that the offspring vector substituted
the parent vector. This is shown in Fig. 1b for the GDM-
ES algorithm, the results for all of the methods are given
in the final three columns of Table 4 that shows the mini-
mum and maximum values obtained within the established
range for ρ. Obviously, the number of times that the off-
spring vector improves upon the parent depends on ρ which
effectively gives the total number of times that an offspring
is generated. Therefore, the results are presented as the pro-
portion of times that the offspring outperformed the parent,
where a value of 1 would indicate that the offspring always
replaces the parent. For GDM-ES, Fig. 1 shows that there is
a correlation between the maximum performance achieved
and the higher proportion of instances in which the offspring
outperformed the parent. This indicates that the ES is allow-
ing the network learning process to improve upon what a
standard BP run would have achieved. Moreover, similar
results were obtained for all ES variants of BP. In the fol-
lowing section, we focus on determining the significance of
the improvements, if any, that are achieved by the evolution-
ary competition between the parent vector and its offspring
when we compare the (1+1)-ES proposals with the standard
algorithms.

6.3 Comparative tests

This section compares each of the baseline BP algorithms
with their ES variants on all of the test problems, setting the ρ

parameter based on the preceding tests. On the other hand, for
the standard BP algorithms the parameters are set to common
values that have been determined after years of theoretical
and empirical work, which is why we do not optimize them
for each specific problem. It is important to consider that
parameter selection and tuning is an important open problem
in machine learning, and most real-world implementations
are based on an initial “good guess” made by the system
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Fig. 1 Performance of GDM-ES on the forensic glass classification problem. a Accuracy, b offspring survival

Table 4 Ranges in which ρ produced the best results for each ES-based BP algorithm

Method ρ for time
series

ρ for
classification

ρ for biometric
pattern

Avg. of offspring
time series

Avg. of offspring
classification

Avg. of offspring
biometric pattern

GD-ES 50−100 200−1,000 2−10 0.08−0.10 0.32−0.67 0.13−0.68

GDA-ES/B 70−500 100−800 200−500 0.14−0.77 0.44−0.86 0.30−0.38

GDA-ES/L 70−500 10−90 100−500 0.16−0.87 0.03−0.24 0.20−0.25

GDM-ES 2−90 200−1,000 2−9 0.05−0.29 0.53−0.55 0.32−0.80

GDX-ES/B 90−700 100−1,000 200−500 0.28−0.29 0.15−0.92 0.42−0.70

GDX-ES/L 60−400 60−100 200−500 0.20−0.32 0.34−0.37 0.25−0.40

designer considering what has previously been reported to
achieve good results in relevant literature. Indeed, the default
values provided in software tools are based precisely on such
an analysis, but it is not correct to describe these parameters
as random, they are set within a specific range of values
were good performance can be expected. Nonetheless, as
stated before, in general these initial values cannot guaran-
tee optimal performance in the general case, so researches
must usually struggle with a tedious trial and error process
to tune system parameters. Therefore, the goal of the pro-
posal made in this work is precisely to allow the designer
to use “standard” initial values, that are then tuned auto-
matically through the ES-based search. On the other hand,
an initial “good guess” for ρ cannot be derived from previ-
ous experiences, it is therefore based on the range of values
where performance peeked on some representative test cases.
Hence, for the experiments reported below, a value within
these, quite large, ranges of values is chosen for each prob-
lem. Indeed, Table 4 confirms what is commonly accepted as
a desirable property of evolutionary algorithms, their robust-
ness to parametrization within a wide range of values. More-
over, it is important to point out that ρ is not chosen based
on the performance achieved on all problems, only on single
representative instances.

6.3.1 Time series

Table 5 shows the comparisons on each of the time series
problems, with statistics of NRMSE4 computed over thirty
runs, showing average performance and standard error. The
results show that in all cases the ES algorithms obtained
a substantial improvement over the baseline methods. For
instance, Fig. 2 shows the time series prediction for MKG2
using GDM and GDM-ES on the test data, this illustrates
the improvement in performance achieved by the ES algo-
rithm. To validate these results we perform a one sided t-test
between each BP algorithm and its ES variant (Zimmerman
and Williams 1986). For all of the cases there is a statistically
significant improvement at the α = 0.01 significance level,
except on the MKG2 time series with GDA and GDA-ES/L.
This is strong evidence that the proposed algorithm is able
to substantially improve upon standard BP training.

In comparison with other published results, the NRMSE
for time series prediction on Mackey–Glass is quite good.
For instance, for MKG2 performance the proposed algo-
rithm outperforms a particle swarm algorithm as reported
by Samanta (2011). However, the method does not outper-

4 Normalized Root Mean Square Error.
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Table 5 Comparative result for
the Mackey–Glass problem
showing the average NRMSE
and standard deviation

Method ρ Error MKG1 Std MKG1 Error MKG2 Std MKG2 Error MKG3 Std MKG3

GD – 2.57 1.18 0.38 0.18 1.87 1.08

GD-ES 80 0.30 0.15 0.20 0.11 0.30 0.16

GDA – 1.84 0.80 0.23 0.14 1.25 0.77

GDA-ES/B 200 0.14 0.03 0.18 0.09 0.25 0.16

GDA-ES/L 70 0.15 0.07 0.20 0.11 0.20 0.06

GDM – 2.88 1.19 0.45 0.26 2.04 1.15

GDM-ES 90 0.23 0.09 0.15 0.06 0.27 0.11

GDX – 2.93 1.43 0.21 0.12 2.07 1.19

GDX-ES/B 700 0.15 0.05 0.14 0.08 0.19 0.07

GDX-ES/L 60 0.16 0.07 0.13 0.07 0.21 0.09
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Fig. 2 Time series prediction on the test data for the MKG2 time series on a GDM and b GDM-ES

form more complex prediction strategies that were specifi-
cally designed for time series forecasting, such as an ensem-
ble of ANIFS (Melin et al. 2012). Nonetheless, the goal here
is only to improve the BP training process, domain specific
systems can then use the learning algorithm to design more
complex ensemble or hybrid methods.

6.3.2 Classification

For the classification problems we use k-fold cross-valida-
tion, Table 6 shows the comparisons on each dataset with
statistics for classification accuracy, showing average per-
formance and standard error. The results show that in the
forensic glass problem the ES algorithms obtained a sub-
stantial improvement over the baseline methods. This is also
apparent for the breast tissue classification problem, partic-
ularly for the GDA-ES variants. However, for red wine most
of the ES algorithms only achieve a minimum improvement
over the basic BP algorithms.

The statistical tests confirm these empirical observations,
because according to the t-tests for the forensic glass prob-

lem all of the ES variants achieve a statistically significant
improvement at the α = 0.01 significance level. For red
wine quality only the two memetic variants of GDA-ES
showed a statistically significant improvement over GDA at
the α = 0.05 significance level, with GDA-ES/L also achiev-
ing it at α = 0.01. In all other cases, the performance is very
similar, with all methods exhibiting a poor performance of
around 50 % accuracy. For the breast tissue problem, given
the amount of available data and classes only threefold cross
validation was performed, which excludes strong statistical
testing and explains the large performance variations exhib-
ited by two methods (GDA-ES/B and GDM-ES). Nonethe-
less, the results indicate a noticeable improvement in average
performance, especially considering the observed standard
error for the GDA-ES and GD-ES variants.

Finally, to provide an additional comparison, we com-
pare with the accuracy results published by other authors
on these sets. This is an informal comparison, since the
algorithms were not executed under the same conditions.
Nonetheless, it provides a rough estimate of the quality
of the results reported here. The performance achieved by
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Table 6 Comparative results
for the classification problems,
showing average classification
accuracy on test data and the
standard error over the k-fold
cross-validation

Method ρ Acc. glass Std glass Acc. wine Std wine Acc. breast Std breast

GD – 34.5 4.3 48.8 7.2 46.21 0.87

GD-ES 500 77.2 8.7 48.2 7.1 54.65 7.99

GDA – 35.0 2.1 46.4 3.9 46.21 0.87

GDA-ES/B 100 74.1 8.0 50.8 4.1 70.82 20.88

GDA-ES/L 100 63.0 8.9 53.6 2.8 60.42 5.09

GDM – 36.8 2.4 50.0 6.7 46.21 0.87

GDM-ES 600 77.8 9.2 51.4 5.3 52.88 11.13

GDX – 35.5 1.8 50.0 5.5 50.97 7.84

GDX-ES/B 500 77.9 9.3 50.4 5.4 55.68 8.93

GDX-ES/L 100 66.2 5.6 50.5 4.4 53.80 10.53

Table 7 Comparative results for the face recognition problem

Method ρ Recognition % Std

GD – 3.45 1.1654

GD-ES 3 67 2.8087

GDA – 81.15 2.6357

GDA-ES/B 400 78.75 3.9033

GDA-ES/L 400 80.1 3.5103

GDM – 3 0.9128

GDM-ES 2 65.8 4.2242

GDX – 79 2.6457

GDX-ES/B 300 79.65 4.6430

GDX-ES/L 300 79.45 3.1837

GDM-ES, GDX-ES/B and GD-ES on forensic glass com-
pares favorably with other published results, see for instance
(Denoeux 2000; Zhong 2007). For red wine the improved ES
variants outperform low-tolerance regression methods, such
as Support Vector Machines (Cortez et al. 2009). More-
over, GDA-ES/L achieves comparable results to those of
Naive Bayes and Artificial Immune Recognition Systems,
but is slightly behind Logistics Regression and another MLP
that achieves around 60 % accuracy5 according to Dogan and
Tanrikulu (2010).

6.3.3 Biometric recognition

Finally, we present comparative tests for biometric recogni-
tion on the ORL dataset, these are summarized in Table 7.
In these tests our proposal achieves different results for each
method. For instance, for GD and GDM the improvements
are substantial, a difference of one order of magnitude in
performance, and the t-tests confirm this above the α = 0.01
significance level. On the other hand, for GDA and GDX the

5 The authors do not provide the network architecture, thus a full com-
parison is not possible.

performance is basically the same with and without ES, and
the t-tests confirms it. It appears that for this problem the
learning process must be able to change the learning rate at
almost every epoch, thus the good performance by GDA and
GDX which is comparable with other approaches (Ayinde
and Yang 2002). Moreover, notice that GD and GDM have
an extremely low accuracy, while their ES variants require a
small value for ρ and thus a frequent update of the learning
rate, see Table 4. However, the random modifications offered
by the ES algorithm cannot achieve the same performance
than the deterministic heuristic followed by GDA, when we
compare GD with GD-ES and GD with GDA.

7 Discussion and conclusions

This paper presents a hybrid approach towards neural net-
work training that combines the standard back-propagation
algorithm with a (1 + 1) Evolutionary Strategy that adap-
tively modifies the main learning parameters. The algorithm
can easily accommodate any of the standard BP variants,
and can thus perform a memetic search when coupled with
an adaptive learning rate method, such as GDA or GDX. The
proposed algorithm was tested on various benchmark prob-
lems and compared with standard methods. The results show
that the overall performance of an MLP in many cases is
increased with the hybrid learning approach, particularly for
time series prediction and classification problems. In fact,
even in the worst test cases, the performance of the proposed
algorithm was never substantially worse than standard meth-
ods. We do not claim that the proposed algorithm will achieve
the best performance on all possible tests, indeed the many
degrees of freedom these algorithms present coupled with
well-known theoretical (Wolpert and Macready 1997) and
experimental (Cantú-Paz and Kamath 2005) results, should
lead us towards the conclusion that the proposal can out-
perform other algorithms on some problems, but will prob-
ably perform worse in other cases. However, the results pre-
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sented here are encouraging, considering that the ES variants
mostly outperform simple BP algorithms, while Cantú-Paz
and Kamath (2005) showed that in their experiments the stan-
dard BP algorithms actually performed better in many test
cases. It appears that the unconstrained adaptations of the
BP learning parameters provided by the (1 + 1)-ES does
indeed allow the learning process to escape local optima
and find a better overall optimization of network connection
weights.

Future work derived from this paper should first focus on
further validating the algorithm in other application domains.
Moreover, in principle the proposed strategy could be used
to enhance other learning algorithms, even those based on
EC techniques, thus providing a self tuning or self adapting
mechanism, which is a prerequisite for the development of
truly autonomous learning systems.

Acknowledgments First author was supported by scholarship 263888
from Consejo Nacional de Ciencia y Tecnología (CONACYT) of Méx-
ico. Corresponding author also thanks the Departamento de Ingeniería
Eléctrica y Electrónica at the Instituto Tecnológico de Tijuana. Addi-
tionally, partial funding for this work was given by CONACYT (Mex-
ico) Basic Science Research Grant No. 178323.

References

Alba E, Chicano JF (2004) Training neural networks with GA hybrid
algorithms. In: Deb K, et al (eds), GECCO (1). Lecture Notes in
computer science, vol 3102. Springer, Berlin, pp 852–863

Ayinde O, Yang Y (2002) Face recognition approach based on rank
correlation of Gabor-filtered images. Pattern Recognit 36(6):1275–
1289

Cantú-Paz E, Kamath C (2005) An empirical comparison of combina-
tions of evolutionary algorithms and neural networks for classifica-
tion problems. IEEE Syst Man Cybern Soc 35(5):915–927

Castillo O, Melin P (2002) Hybrid intelligent systems for time series
prediction using neural networks, fuzzy logic, and fractal theory.
IEEE Trans Neural Netw 13(6):1395–1408

Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) Modeling wine
preferences by data mining from physicochemical properties. Decis
Support Syst 47(4):547–553

DeJong K (2002) Evolutionary computation: a unified approach. The
MIT Press, Cambridge

Denoeux T (2000) A neural network classifier based on Dempster–
Shafer theory. IEEE Syst Man Cybern Soc 30(2):131–150

Dogan N, Tanrikulu Z (2010) A comparative framework for evaluating
classification algorithms. In: Proceedings of the world congress on
engineering 2010, vol 1. WCE, pp 379–384

Dorigo M, Stützle T (2004) Ant colony optimization. Bradford Com-
pany, Scituate

Eiben AE, Smith JE (2003) Introduction to evolutionary computing.
Springer, Berlin

Fogel DB, Fogel LJ, Porto VW (1990) Evolving neural networks. Biol
Cybern 63(6):487–493

Hagan M, Demuth H, Beale M (1996) Neural Network Design. PWS
Publishing Company, Boston

Harp SA, Samad T, Guha A (1989) Towards the genetic synthesis of
neural network. In: Proceedings of the third international confer-
ence on Genetic algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, pp 360–369

Hoel PG, Port SC, Stone CJ (1987) Introduction to stochastic processes.
Waveland Press, Long Grove

Husbands P (1994) Distributed coevolutionary genetic algorithms for
multi-criteria and multi-constraint optimisation. In: Selected papers
from AISB workshop on evolutionary computing. Springer, London,
pp 150–165

Isasi Viñuela P (2004) Redes neuronales artificiales: un enfoque prác-
tico. TPearson Educacion, Upper Saddle River

Kim HB, Jung SH, Kim TG, Park KH (1996) Fast learning method
for back-propagation neural network by evolutionary adaptation of
learning rates. Neurocomputing 11(1):101–106

Kiranyaz S, Ince T, Yildirim A, Gabbouj M (2009) Evolutionary artifi-
cial neural networks by multi-dimensional particle swarm optimiza-
tion. Neural Netw 22(10):1448–1462

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. Science 220(4598):671–680

Lee S-W (1996) Off-line recognition of totally unconstrained handwrit-
ten numerals using multilayer cluster neural network. IEEE Trans
Pattern Anal Mach Intell 18(6):648–652

Mackey M, Glass L (1977) Oscillation and chaos in physiological con-
trol systems. Science 197(4300):287–289

Melin P, Castillo O (2005) Hybrid intelligent systems for pattern recog-
nition using soft computing: an evolutionary approach for neural
networks and fuzzy systems (Studies in fuzziness and soft comput-
ing). Springer-Verlag New York Inc., Secaucus

Melin P, Soto J, Castillo O, Soria J (2012) A new approach for time
series prediction using ensembles of ANFIS models. Expert Syst
Appl 39(3):3494–3506

Merelo J, Patón M, Cañas A, Prieto A, Morán F (1993) Optimization
of a competitive learning neural network by genetic algorithms. In:
Proceedings of the international workshop artificial neural networks
(IWANN93). Lecture notes in computer science, vol 686. Morgan
Kaufmann Publishers Inc., Berlin, pp 185–192

Miller GF, Todd PM, Hegde SU (1989) Designing neural networks
using genetic algorithms. In: Proceedings of the third international
conference on Genetic algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, pp 379–384

Nolfi S, Floreano D (2000) Evolutionary robotics: the biology, intelli-
gence, and technology. MIT Press, Cambridge

Patel D (1996) Using genetic algorithms to construct a network for
financial prediction. In: Proceedings of SPIE: applications of artifi-
cial neural networks in image processing. pp 204–213

Radi A, Poli R (2003) Discovering efficient learning rules for feedfor-
ward neural networks using genetic programming, chap 7. Physica-
Verlag GmbH, Heidelberg, pp 133–159

Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Liu L, Özsu
MT (eds) Encyclopedia of database systems. Springer, Berlin, pp
532–538

Riedmiller M (1994) Rprop—description and implementation details.
Technical report, University of Karlsruhe

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal rep-
resentations by error propagation, chap 8. MIT Press, Cambridge,
pp 318–362

Samanta B (2011) Prediction of chaotic time series using computational
intelligence. Expert Syst Appl 38(9):11406–11411

Samarasinghe S (2006) Neural networks for applied sciences and engi-
neering. Auerbach Publications, Boston

Samaria FS, Harter AC (2002) Parameterisation of a stochastic model
for human face identification. In: Applications of computer vision,
vol 1994. Proceedings of the second IEEE workshop on Sarasota,
FL. pp 138–142

Schwefel H-P (1981) Numerical optimization of computer models. John
Wiley & Sons Inc., New York

Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-based
encoding for evolving large-scale neural networks. Artif Life
15(2):185–212

123



1614 J. Parra et al.

Stanley KO, Miikkulainen R (2002) Evolving neural networks through
augmenting topologies. Evol Comput 10(2):99–127

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. Trans Evol Comp 1(1):67–82

Yao X (1999) Evolving artificial neural networks. Proc IEEE
87(9):1423–1447

Zhang G (2000) Neural networks for classification: a survey. IEEE Syst
Man Cybern Soc 30(4):451–462

Zhong P, Fukushima M (2007) Regularized nonsmooth newton method
for multi-class support vector machines. Optim Methods Softw
22(1):225–236

Zimmerman DW, Williams RH (1986) Modern elementary statistics,
with theoretical supplement and BASIC programming. American
Sciences Press, Syracuse

123


	Hybrid back-propagation training with evolutionary strategies
	Abstract 
	1 Introduction
	2 Background and basic concepts
	2.1 Back-propagation training
	2.1.1 Back-propagation algorithm

	2.2 BP with adaptive learning rate
	2.3 BP with momentum
	2.4 BP with momentum and adaptive learning rate

	3 Problem description and main proposal
	4 Evolutionary computation and ANNs
	5 The proposed hybrid learning approach
	5.1 Evolutionary strategies
	5.2 Evolutionary strategies for BP learning
	5.3 Memetic search
	5.4 Discussion and design choices
	5.5 Comparison with previous work and design choices

	6 Experiments and results
	6.1 Datasets and experimental setup
	6.2 Effects of the number of epochs per generation  on network training
	6.3 Comparative tests
	6.3.1 Time series
	6.3.2 Classification
	6.3.3 Biometric recognition


	7 Discussion and conclusions
	Acknowledgments
	References


